Staurosporine-induced collapse of cochlear hair bundles
نویسندگان
چکیده
Early postnatal mouse cochlear cultures were treated with a small panel of kinase inhibitors to elucidate the mechanisms underlying the maintenance of hair-bundle structure in the developing inner ear. At low concentrations (1-10 nM), staurosporine causes the collapse and loss of hair bundles without provoking hair-cell death, as judged by lack of terminal transferase dUTP nick end labeling (TUNEL) labeling or reactivity to anti-activated caspase-3. Staurosporine exposure results in the fusion of the hair bundle's stereocilia, a resorption of the parallel actin bundles of the stereocilia into the cytoplasm of the hair cell, a detachment of the apical, non-stereociliary membrane of the hair cell from the underlying cuticular plate, and a severing of the hair-bundle's rootlets from the actin cores of the stereocilia. It does not block membrane retrieval at the apical pole of the hair cells, nor does it elicit the externalization of phosphatidylserine. Staurosporine treatment causes a reduction in levels of the phosphorylated forms of ezrin, radixin, and moesin in cochlear cultures during the period of hair-bundle loss, indicating the integrity of the hair bundle may be actively maintained by the phosphorylation status of these proteins.
منابع مشابه
Over-expression of myosin7A in cochlear hair cells of circling mice
Circling mouse (C57BL/6J-cir/cir) deleted the transmembrane inner ear (Tmie) gene is an animal model for human non-syndromic recessive deafness, DFNB6. In circling mouse, hair cells in the cochlea have degenerated and hair bundles have become irregularity as time goes on. Tmie protein carries out a function of the mechanoelectrical transduction channel in cochlear hair cells. Myosin7a (MYO7A) p...
متن کاملTwinfilin 2 regulates actin filament lengths in cochlear stereocilia.
Inner ear sensory hair cells convert mechanical stimuli into electrical signals. This conversion happens in the exquisitely mechanosensitive hair bundle that protrudes from the cell's apical surface. In mammals, cochlear hair bundles are composed of 50-100 actin-filled stereocilia, which are organized in three rows in a staircase manner. Stereocilia actin filaments are uniformly oriented with t...
متن کاملShaker-1 mutations reveal roles for myosin VIIA in both development and function of cochlear hair cells.
The mouse shaker-1 locus, Myo7a, encodes myosin VIIA and mutations in the orthologous gene in humans cause Usher syndrome type 1B or non-syndromic deafness. Myo7a is expressed very early in sensory hair cell development in the inner ear. We describe the effects of three mutations on cochlear hair cell development and function. In the Myo7a816SB and Myo7a6J mutants, stereocilia grow and form row...
متن کاملShaky hearing
Functional sensory hair cells in the inner ear have specialised microvilli — stereocilia — which are essential for hearing. The scanning electron micrograph at top shows the normal arrangement of stereocilia bundles on three outer hair cells in the inner ear of a three-day-old mouse. The stereocilia grow to form rows of graded height in a distinctive V-shaped bundle. Recent studies in mice have...
متن کاملRegeneration of Stereocilia of Hair Cells by Forced Atoh1 Expression in the Adult Mammalian Cochlea
The hallmark of mechanosensory hair cells is the stereocilia, where mechanical stimuli are converted into electrical signals. These delicate stereocilia are susceptible to acoustic trauma and ototoxic drugs. While hair cells in lower vertebrates and the mammalian vestibular system can spontaneously regenerate lost stereocilia, mammalian cochlear hair cells no longer retain this capability. We e...
متن کامل